Tag Archives: gearbox planetary

China high quality P Series Planetary Gearbox High Torque Speed Reducer Washing Machine Gearbox Planetary Gearbox 4n M 1400rpm P2saz-36-80 gearbox drive shaft

Product Description

 

Product Name

Best price of P series planetary gearbox for concrete mixer

Series

gear reducer

Application

Power Tranmission

Bearing

China Top brand HRB,LYC,ZWZ or other brands requested, CZPT

Used

industry machinery

 

Product Description

 

1.P series planetary gear reducer is widely used in metallurgy , mining, lifting and transport , electricity, energy , building
materials, light industry, transportation and other industrial sectors.

2. P series planetary gear involute planetary gear transmission , within a reasonable use, external gear , power split .

3. The planetary gear modular design changes can be combined according to customer requirements.

4.Carburized gears are used to obtain high- hard wear-resistant surface , all the heat treatment after grinding gear teeth ,
reduce noise , improve the overall efficiency and service life.

5. Hight quality gear reducer , small transmission ratio range , high efficiency, smooth operation, low noise adaptability and
other characteristics .

1 . Input: concentric shaft input , the helical gear input , bevel – helical gear input, bevel gear input.

2 . Output: the splined inner, hollow shaft shrink disc, splined outer, CZPT shaft flat key .

3.The planetary gear involute planetary gear transmission, within a reasonable use of external gear, power split. Therefore,light weight, small size, transmission ratio range, high efficiency, smooth operation, low noise, strong adaptability and other
characteristics.

4 . Box with ductile iron, greatly improving cabinet rigidity and shock resistance.

5 . Modular design , according to customer requirements to change the combination types .

6 . The installation forms : horizontal and vertical installation, torque arm mounting

7 . Combined with R series , K series to get greater ratio .
 

Company Profile

Certifications

Packaging & Shipping

FAQ

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 100000/Piece
1 Piece(Min.Order)

|
Request Sample

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment

Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:

High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.

Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.

Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.

Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.

Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.

Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.

Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox’s operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear’s size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears’ external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China high quality P Series Planetary Gearbox High Torque Speed Reducer Washing Machine Gearbox Planetary Gearbox 4n M 1400rpm P2saz-36-80   gearbox drive shaft	China high quality P Series Planetary Gearbox High Torque Speed Reducer Washing Machine Gearbox Planetary Gearbox 4n M 1400rpm P2saz-36-80   gearbox drive shaft
editor by CX 2024-02-23

China Good quality CZPT Egft Series Electric Track& Wheel Drive Omni Ve Series Planetary Gearbox bevel gearbox

Product Description

Elite HFTE planetary drives incorporate an integrated, maintenance-free electric motor and offer significant benefits, including compact dimensions, low noise and high efficiency. HFTE Series drives are designed for use with all kinds of aerial platforms and other types of mobile machinery, for indoor and outdoor use. This advanced powertrain solution uses a two- or three-stage gearbox offering reduction ratios of up to 1:153 to satisfy the widest possible range of needs. The gearbox is coupled with a low-voltage induction motor (BT Series), specially developed for traction power and control applications.
Key features
Two- or three-stage planetary drive with reduction ratios of up to 1:153
Optimized gear design for maximum efficiency and minimum noise
Integrated, low voltage, 3 phase induction motor with inverter
Integrated, high accuracy, KTY temperature sensor
High resolution, Hall effect speed sensor

 
1.Our material warehouse

2. Our machining euqipment

3  Our Inspection equipment

4 Our assembly line

5  Our testing machine
6  Our painting line
7 Finished gearbox warehouse

In conclusion, ELITE Hydraulic offers quality, value, and professional power transmission solutions that cater to a wide variety of industries. With their expertise, experience, and commitment to customer satisfaction, you can be sure that you’re in safe hands when working with them. Whether you need travel gearbox, electrical drive, travel drive,slew gearbox,winche gearbox,cutter gearbox,truck mixer gearbox,twin shaft mixer or other hydraulic transmission  solutions, you can trust ELITE Hydraulic to provide you with the best possible solutions. Contact them today to learn more about their power transmission products and services.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Motorcycle, Machinery, Agricultural Machinery
Function: Change Drive Torque, Speed Changing, Speed Reduction
Hardness: Hardened Tooth Surface
Step: Three-Step
Type: Planetary Gear Box
Transport Package: Wooden Boxes
Customization:
Available

|

Customized Request

planetary gearbox

Impact of Gear Tooth Design and Profile on the Efficiency of Planetary Gearboxes

The design and profile of gear teeth have a significant impact on the efficiency of planetary gearboxes:

  • Tooth Profile: The tooth profile, such as involute, cycloid, or modified profiles, affects the contact pattern and load distribution between gear teeth. An optimized profile minimizes stress concentration and ensures smooth meshing, contributing to higher efficiency.
  • Tooth Shape: The shape of gear teeth influences the amount of sliding and rolling motion during meshing. Gear teeth designed for more rolling and less sliding motion reduce friction and wear, enhancing overall efficiency.
  • Pressure Angle: The pressure angle at which gear teeth engage affects the force distribution and efficiency. Larger pressure angles can lead to higher efficiency due to improved load sharing, but they may require more space.
  • Tooth Thickness and Width: Optimized tooth thickness and width contribute to distributing the load more evenly across the gear face. Proper sizing reduces stress and increases efficiency.
  • Backlash: Backlash, the gap between meshing gear teeth, impacts efficiency by causing vibrations and energy losses. Properly controlled backlash minimizes these effects and improves efficiency.
  • Tooth Surface Finish: Smoother tooth surfaces reduce friction and wear. Proper surface finish, achieved through grinding or honing, enhances efficiency by reducing energy losses due to friction.
  • Material Selection: The choice of gear material influences wear, heat generation, and overall efficiency. Materials with good wear resistance and low friction coefficients contribute to higher efficiency.
  • Profile Modification: Profile modifications, such as tip and root relief, optimize tooth contact and reduce interference. These modifications minimize friction and increase efficiency.

In summary, the design and profile of gear teeth play a crucial role in determining the efficiency of planetary gearboxes. Optimal tooth profiles, shapes, pressure angles, thicknesses, widths, surface finishes, and material selections all contribute to reducing friction, wear, and energy losses, resulting in improved overall efficiency.

planetary gearbox

Differences Between Inline and Right-Angle Planetary Gearbox Configurations

Inline and right-angle planetary gearbox configurations are two common designs with distinct characteristics suited for various applications. Here’s a comparison of these configurations:

Inline Planetary Gearbox:

  • Configuration: In an inline configuration, the input and output shafts are aligned along the same axis. The sun gear, planetary gears, and ring gear are typically arranged in a straight line.
  • Compactness: Inline gearboxes are more compact and have a smaller footprint, making them suitable for applications with limited space.
  • Efficiency: Inline configurations tend to have slightly higher efficiency due to the direct alignment of components.
  • Output Speed and Torque: Inline gearboxes are better suited for applications that require higher output speeds and lower torque.
  • Applications: They are commonly used in robotics, conveyors, printing machines, and other applications where space is a consideration.

Right-Angle Planetary Gearbox:

  • Configuration: In a right-angle configuration, the input and output shafts are oriented at a 90-degree angle to each other. This allows for a change in direction of power transmission.
  • Space Flexibility: Right-angle gearboxes offer flexibility in arranging components, making them suitable for applications that require changes in direction or where space constraints prevent a straight-line configuration.
  • Torque Capacity: Right-angle configurations can handle higher torque loads due to the increased surface area of gear engagement.
  • Applications: They are often used in cranes, elevators, conveyor systems, and applications requiring a change in direction.
  • Efficiency: Right-angle configurations may have slightly lower efficiency due to increased gear meshing complexity and potential for additional losses.

Choosing between inline and right-angle configurations depends on factors such as available space, required torque and speed, and the need for changes in power transmission direction. Each configuration offers distinct advantages based on the specific needs of the application.

planetary gearbox

Contribution of Planetary Gearboxes to Efficient Industrial Automation and Robotics

Planetary gearboxes play a crucial role in enhancing the efficiency of industrial automation and robotics systems by offering several advantages:

1. Compact Design: Planetary gearboxes provide high power density and a compact form factor. This is essential in robotics and automation where space is limited and components need to be tightly integrated.

2. High Torque Density: Planetary gearboxes can achieve high torque output in a compact size, allowing robots and automated systems to handle heavy loads and perform demanding tasks efficiently.

3. Precision and Accuracy: The design of planetary gear systems ensures accurate and precise motion control. This is vital in robotics applications where precise positioning and smooth movement are required for tasks such as pick-and-place operations and assembly.

4. Redundancy: Some planetary gearboxes feature multiple stages and redundant configurations. This provides a level of built-in redundancy, enhancing the reliability of automation systems by allowing continued operation even if one stage fails.

5. Efficiency: Planetary gearboxes are designed for high efficiency, minimizing energy losses and ensuring that the power delivered to the output stage is effectively utilized. This efficiency is crucial for reducing energy consumption and optimizing battery life in robotic applications.

6. Speed Control: Planetary gearboxes allow for precise speed control, enabling robots to perform tasks at varying speeds as needed. This flexibility is essential for tasks that require different motion dynamics or speed profiles.

7. Reduction of Motor Loads: Planetary gearboxes can reduce the load on the motor by providing mechanical advantage through gear reduction. This allows smaller, more efficient motors to be used without sacrificing performance.

8. Shock Absorption: The inherent elasticity of gear teeth in planetary gearboxes can help absorb shocks and impacts, protecting the system components and ensuring smooth operation in dynamic environments.

9. Customization: Planetary gearboxes can be tailored to specific application requirements, including gear ratios, output configurations, and mounting options. This adaptability allows for optimal integration into various automation and robotics setups.

10. Maintenance and Durability: High-quality planetary gearboxes are designed for durability and low maintenance. This is especially important in industrial automation and robotics, where continuous operation and minimal downtime are essential.

Overall, planetary gearboxes contribute significantly to the efficient operation of industrial automation and robotics systems by providing the necessary torque, precision, compactness, and reliability required for these dynamic and demanding applications.

China Good quality CZPT Egft Series Electric Track& Wheel Drive Omni Ve Series Planetary Gearbox   bevel gearbox	China Good quality CZPT Egft Series Electric Track& Wheel Drive Omni Ve Series Planetary Gearbox   bevel gearbox
editor by CX 2024-02-22

China best Abr090 2stage Transmission Precison Planetary Reducer Gearbox for CZPT Motor, 0.75kw wholesaler

Product Description

Product Description

Ratio   : 3:1—10000:1 Backlash  : up to 3 arcmin
Output : up to 6000N.m Frame      : AB/ABR042-285

Output : Inclined Tooth Output Shaft
               Double support of deep groove ball bearing

ABR core feature

Structural feature

Reducer output planetary frame adopts integrated nut to eliminate axial clearance design, the front and back tapered roller bearing large span distribution and the whole box, forming a super integrated structure, to ensure the improvement of torsional rigidity and has a super strong radial bearing capacity and axial bearing capacity, using a processing process to complete, to ensure a very high coaxiality.

Gear ring of reducer adopts integral structure design.

Reducer gear ring, planetary frame, input shaft are made of 40Cr high-quality structural steel, hot forging process, so as to obtain higher material density, than the use of casting box, round steel, with higher strength, rigidity, toughness.

Gear characteristics

Real hard tooth surface helical gear, gear material is 20CrMnTi high quality alloy steel, after carburizing – grinding process processing, hardness up to HRC62, compared with ordinary steel 40Cr, 38CrMnTi surface nitriding treatment of gear has higher hardness, rigidity, toughness, wear resistance. The design and analysis technology of 3DSimulation is adopted to modify the tooth shape, tooth direction and follow the trimming, respectively, in order to reduce the noise of gear meshing and increase the service life of the gear train.

Application characteristics

Long span tapered roller bearing arrangement output integral planetary architecture, so that the product has strong radial bearing capacity and excellent axial bearing capacity, and has high rigidity. High precision applications, frequent start-stop and load changes are outstanding.
 

Installation Instructions

Precision planetary reducer – about installation

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Double-Step
Customization:
Available

|

Customized Request

planetary gearbox

Role of Planetary Gearboxes in Powertrain Systems of Electric and Hybrid Vehicles

Planetary gearboxes play a critical role in the powertrain systems of both electric and hybrid vehicles, contributing to their efficiency and performance:

Electric Motor Integration: In electric vehicles (EVs) and hybrid vehicles, planetary gearboxes are commonly used to connect the electric motor to the drivetrain. They enable torque and speed transformation, ensuring the motor’s output is suitable for the vehicle’s desired speed range and load conditions.

Torque Splitting in Hybrids: Hybrid vehicles often have both an internal combustion engine (ICE) and an electric motor. Planetary gearboxes enable torque splitting between the two power sources, optimizing their combined performance for various driving scenarios, such as electric-only mode, hybrid mode, and regenerative braking.

Regenerative Braking: Planetary gearboxes facilitate regenerative braking in electric and hybrid vehicles. They enable the electric motor to function as a generator, converting kinetic energy into electrical energy during deceleration. This energy can then be stored in the vehicle’s battery for later use.

Compact Design: Planetary gearboxes offer a compact design with a high power density, making them suitable for the limited space available in electric and hybrid vehicles. This compactness allows manufacturers to maximize interior space and accommodate battery packs, drivetrain components, and other systems.

Efficient Power Distribution: The unique arrangement of planetary gears allows for efficient power distribution and torque management. This is particularly important in electric and hybrid powertrains, where optimal power allocation between different components contributes to overall efficiency.

CVT Functionality: Some hybrid vehicles incorporate Continuously Variable Transmission (CVT) functionality using planetary gearsets. This enables seamless and efficient transitions between various gear ratios, improving the driving experience and enhancing fuel efficiency.

Performance Modes: Planetary gearboxes facilitate the implementation of different performance modes in electric and hybrid vehicles. These modes, such as “Sport” or “Eco,” adjust the power distribution and gear ratios to optimize performance or energy efficiency based on the driver’s preferences.

Reduction Gear for Electric Motors: Electric motors often operate at high speeds and require reduction gearing to match the vehicle’s requirements. Planetary gearboxes provide the necessary gear reduction while maintaining efficiency and torque output.

Efficient Torque Transfer: Planetary gearboxes ensure efficient transfer of torque from the power source to the wheels, resulting in smooth acceleration and responsive performance in electric and hybrid vehicles.

Integration with Energy Storage: Planetary gearboxes contribute to the integration of energy storage systems, such as lithium-ion batteries, by efficiently connecting the power source to the drivetrain while managing power delivery and regeneration.

In summary, planetary gearboxes are integral components of the powertrain systems in electric and hybrid vehicles. They enable efficient power distribution, torque transformation, regenerative braking, and various driving modes, contributing to the overall performance, efficiency, and sustainability of these vehicles.

planetary gearbox

Signs of Wear or Damage in Planetary Gearboxes and Recommended Service

Planetary gearboxes, like any mechanical component, can exhibit signs of wear or damage over time. Recognizing these signs is crucial for timely maintenance to prevent further issues. Here are some common signs of wear or damage in planetary gearboxes:

1. Unusual Noise: Excessive noise, grinding, or whining sounds during operation can indicate worn or misaligned gear teeth. Unusual noise is often a clear indicator that something is wrong within the gearbox.

2. Increased Vibration: Excessive vibration or shaking during operation can result from misalignment, damaged bearings, or worn gears. Vibration can lead to further damage if not addressed promptly.

3. Gear Tooth Wear: Inspect gear teeth for signs of wear, pitting, or chipping. These issues can result from improper lubrication, overload, or other operational factors. Damaged gear teeth can affect the gearbox’s efficiency and performance.

4. Oil Leakage: Leakage of gearbox oil or lubricant can indicate a faulty seal or gasket. Oil leakage not only leads to reduced lubrication but can also cause environmental contamination and further damage to the gearbox components.

5. Temperature Increase: A significant rise in operating temperature can suggest increased friction due to wear or inadequate lubrication. Monitoring temperature changes can help identify potential issues early.

6. Reduced Efficiency: If you notice a decrease in performance, such as decreased torque output or inconsistent speed, it could indicate internal damage to the gearbox components.

7. Abnormal Gear Ratios: If the output speed or torque does not match the expected gear ratio, it could be due to gear wear, misalignment, or other issues affecting the gear engagement.

8. Frequent Maintenance Intervals: If you find that you need to service the gearbox more frequently than usual, it could be a sign that the gearbox is experiencing excessive wear or damage.

When to Service: If any of the above signs are observed, it’s important to address them promptly. Regular maintenance checks are also recommended to detect potential issues early and prevent more significant problems. Scheduled maintenance should include inspections, lubrication checks, and replacement of worn or damaged components.

It’s advisable to consult the gearbox manufacturer’s guidelines for recommended service intervals and practices. Regular maintenance can extend the lifespan of the planetary gearbox and ensure it continues to operate efficiently and reliably.

planetary gearbox

Factors to Consider When Selecting a Planetary Gearbox

Choosing the right planetary gearbox for a specific application involves considering various factors to ensure optimal performance and compatibility. Here are the key factors to keep in mind:

  • Load Requirements: Determine the torque and speed requirements of your application. Planetary gearboxes offer different torque and speed ratios, so selecting the appropriate gearbox with the right load capacity is crucial.
  • Ratio: Evaluate the gear reduction ratio needed to achieve the desired output speed and torque. Planetary gearboxes come in various gear ratios, allowing you to customize the output characteristics.
  • Efficiency: Consider the gearbox’s efficiency, as it affects energy consumption and heat generation. Higher efficiency gearboxes minimize power losses during transmission.
  • Size and Compactness: Planetary gearboxes are known for their compact size, but it’s essential to choose a size that fits within the available space while meeting performance requirements.
  • Mounting Configuration: Determine how the gearbox will be mounted in your application. Planetary gearboxes can have different mounting options, including flange, shaft, or foot mountings.
  • Input and Output Types: Select the appropriate input and output shaft configurations, such as male, female, keyed, splined, or hollow shafts, to ensure compatibility with your equipment.
  • Environment: Consider the operating environment, including temperature, humidity, dust, and potential exposure to chemicals. Choose a gearbox with appropriate seals and materials to withstand the conditions.
  • Accuracy: Some applications require precise motion control. If accuracy is essential, choose a gearbox with minimal backlash and high gear mesh quality.
  • Service Life and Reliability: Evaluate the gearbox’s expected service life and reliability based on the manufacturer’s specifications. Choose a reputable manufacturer known for producing reliable products.
  • Backlash: Backlash is the play between gears that can affect positioning accuracy. Depending on your application, you might need a gearbox with low backlash or a method to compensate for it.
  • Budget: Consider your budget constraints while balancing performance requirements. Sometimes, investing in a higher-quality gearbox upfront can lead to long-term cost savings through reduced maintenance and downtime.

By carefully considering these factors and consulting with gearbox manufacturers or experts, you can select a planetary gearbox that best meets the unique demands of your application.

China best Abr090 2stage Transmission Precison Planetary Reducer Gearbox for CZPT Motor, 0.75kw   wholesaler China best Abr090 2stage Transmission Precison Planetary Reducer Gearbox for CZPT Motor, 0.75kw   wholesaler
editor by CX 2024-02-21

China Standard Customizable Ratios in High Torque Planetary Gearbox Design for Motors best automatic gearbox

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
060 090 115 142 180 220 280 330 400
Rated Output Torque T2n N.m 1 3 27.8 115 212 470 1226 1730 4230 8200 12500
4 46.32 142 268 582 1450 2270 5120 9800 16000
5 46.32 142 268 582 1450 2270 5120 8500 12200
7 38.9 110 212 468 1130 1610 3220 5000 7600
10 18.5 100 95 255 730 1050 1820 3500 5000
2 12 46.32 142 268 582 1450 2270 5120 9800 16000
15 46.32 142 268 582 1450 2270 5120 8500 12200
20 46.32 142 268 582 1450 2270 5120 9800 16000
25 46.32 142 268 582 1450 2270 5120 8500 12200
28 46.32 142 268 582 1450 2270 5120 9800 16000
30 27.8 115 212 470 1226 1730 4230 8200 12500
35 46.32 142 268 582 1450 2270 5120 8500 12200
40 46.32 142 268 582 1450 2270 5120 9800 16000
50 46.32 142 268 582 1450 2270 5120 8500 12200
70 38.9 110 212 468 1130 1610 3220 5000 7600
100 18.5 100 95 255 730 1050 1820 3500 5000
3 120 46.32 142 268 582 1450 2270 5120 9800 16000
150 46.32 142 268 582 1450 2270 5120 8500 12200
200 46.32 142 268 582 1450 2270 5120 9800 16000
250 46.32 142 268 582 1450 2270 5120 8500 12200
280 46.32 142 268 582 1450 2270 5120 9800 16000
350 46.32 142 268 582 1450 2270 5120 8500 12200
400 46.32 142 268 582 1450 2270 5120 9800 16000
500 46.32 142 268 582 1450 2270 5120 8500 12200
700 38.9 110 212 468 1130 1610 3220 5000 7600
1000 18.5 100 95 255 730 1050 1820 3500 5000
Maximum Output Torque T2b N.m 1,2,3 3~1000 2Times of Rated Output Torque
Rated Input Speed N1n rpm 1,2,3 3~1000 4000 3500 3500 3000 3000 2500 2000 1500 1500
Maximum Input Speed N1b rpm 1,2,3 3~1000 8000 7000 7000 5000 5000 4000 3000 2000 2000
Precision Backlash P1 arcmin 1 3~1000 ≤4 ≤4 ≤4 ≤4 ≤4 ≤4 ≤8 ≤8 ≤8
arcmin 2 3~1000 ≤6 ≤6 ≤6 ≤6 ≤6 ≤6 ≤12 ≤12 ≤12
arcmin 3 3~1000 ≤8 ≤8 ≤8 ≤8 ≤8 ≤8 ≤16 ≤16 ≤16
Standard Backlash P2 arcmin 1 3~1000 ≤8 ≤8 ≤8 ≤8 ≤8 ≤8 ≤12 ≤12 ≤12
arcmin 2 3~1000 ≤10 ≤10 ≤10 ≤10 ≤10 ≤10 ≤18 ≤18 ≤18
arcmin 3 3~1000 ≤12 ≤12 ≤12 ≤12 ≤12 ≤12 ≤24 ≤24 ≤24
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 7 14 25 50 145 225 300 330 350
Allowable Radial Force F2rb2 N 1,2,3 3~1000 1550 3250 6700 9400 14500 50000 60000 70000 90000
Allowable Axial Force F2ab2 N 1,2,3 3~1000 775 1625 3350 4700 7250 25000 30000 95000 1250000
Moment of Inertia J1 kg.cm2 1 3~10 0.18 0.75 2.85 12.4 15.3 34.8 44.9 80 255
2 12~100 0.15 0.52 2.15 7.6 15.2 32.2 41.8 75 240
3 120~1000 0.07 0.36 2.05 6.3 14.2 18.3 28.1 68 220
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 95%
2 12~100 92%
3 120~1000 85%
Noise Level dB 1,2,3 3~1000 ≤58 ≤62 ≤65 ≤70 ≤70 ≤75 ≤75 ≤75 ≤75
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 1.3 3.6 7.5 16 28 48 110 160 250
2 12~100 1.5 4.2 9.5 20 32 60 135 190 340
3 120~1000 1.8 4.8 11.5 24 36 72 150 225 420

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

The Role of Lubrication and Cooling in Maintaining Planetary Gearbox Performance

Lubrication and cooling are essential factors in ensuring the optimal performance and longevity of planetary gearboxes. Here’s how they play a crucial role:

Lubrication: Proper lubrication is vital for reducing friction and wear between gear teeth and other moving components within the gearbox. It forms a protective layer that prevents metal-to-metal contact and minimizes heat generation. The lubricant also helps dissipate heat and contaminants, ensuring a smoother and quieter operation.

Using the right type of lubricant and maintaining the proper lubrication level are essential. Over time, lubricants may degrade due to factors like temperature, load, and operating conditions. Regular lubricant analysis and replacement help maintain optimal gearbox performance.

Cooling: Planetary gearboxes can generate significant heat during operation due to friction and power transmission. Excessive heat can lead to lubricant breakdown, reduced efficiency, and premature wear. Cooling mechanisms, such as cooling fans, fins, or external cooling systems, help dissipate heat and maintain a stable operating temperature.

Efficient cooling prevents overheating and ensures consistent lubricant properties, extending the life of the gearbox components. It’s particularly important in applications with high-speed or high-torque requirements.

Overall, proper lubrication and cooling practices are essential to prevent excessive wear, maintain efficient power transmission, and prolong the service life of planetary gearboxes. Regular maintenance and monitoring of lubrication quality and cooling effectiveness are key to ensuring the continued performance of these gearboxes.

planetary gearbox

Role of Sun, Planet, and Ring Gears in Planetary Gearboxes

The arrangement of sun, planet, and ring gears is a fundamental aspect of planetary gearboxes and significantly contributes to their performance. Each gear type plays a specific role in the gearbox’s operation:

  • Sun Gear: The sun gear is located at the center and is driven by the input power source. It transmits torque to the planet gears, causing them to orbit around it. The sun gear’s size and rotation speed affect the overall gear ratio of the system.
  • Planet Gears: Planet gears are smaller gears that surround the sun gear. They are held in place by the planet carrier and mesh with both the sun gear and the internal teeth of the ring gear. As the sun gear rotates, the planet gears revolve around it, engaging with both the sun and ring gears simultaneously. This arrangement multiplies torque and changes the direction of rotation.
  • Ring Gear (Annulus Gear): The ring gear is the outermost gear with internal teeth that mesh with the planet gears’ external teeth. It remains stationary or acts as the output shaft. The interaction between the planet gears and the ring gear causes the planet gears to rotate on their own axes as they orbit the sun gear.

The arrangement of these gears allows for various gear reduction ratios and torque multiplication effects, making planetary gearboxes versatile and efficient for a wide range of applications. The combination of multiple gear engagements and interactions distributes the load across multiple gear teeth, resulting in higher torque capacity, smoother operation, and lower stress on individual gear teeth.

Planetary gearboxes offer advantages such as compact size, high torque density, and the ability to achieve multiple gear reduction stages within a single unit. The arrangement of the sun, planet, and ring gears is essential for achieving these benefits while maintaining efficiency and reliability in various mechanical systems.

China Standard Customizable Ratios in High Torque Planetary Gearbox Design for Motors   best automatic gearbox	China Standard Customizable Ratios in High Torque Planetary Gearbox Design for Motors   best automatic gearbox
editor by CX 2024-02-20

China best High Torque Precision Planetary Gearbox for Conveyors cycloidal gearbox

Product Description

 
 

Product Description

Product Parameters

 

Parameters Unit Level Reduction Ratio Flange Size Specification
042 060 090 115 142 180 220 280 330
Rated Output Torque T2n N.m 1 3 20 55 130 208 342 750 1140 1500 3000
4 19 50 140 290 542 1050 1700 5800 10190
5 22 60 160 330 650 1200 2000 4400 7180
6 20 55 140 300 550 1100 1800 3500 6500
7 19 50 140 300 550 1100 1800 3220 5000
8 17 45 120 260 500 1000 1600 2595 4080
10 14 40 100 230 450 900 1500 1820 3500
2 12 20 55 130 208 342 1050 1700 5800 10190
15 22 60 160 330 650 1200 2000 4400 7180
20 22 60 160 330 650 1200 2000 5800 10190
25 22 60 160 330 650 1200 2000 4400 7180
28 19 50 140 300 550 1100 1800 5800 10190
30 20 55 130 230 450 900 1500 1500 3500
35 22 60 160 330 650 1200 2000 4400 7180
40 22 60 160 330 650 1200 2000 5800 10190
50 22 60 160 330 650 1200 2000 4400 7180
70 19 50 140 300 550 1100 1800 3220 5000
100 14 40 100 230 450 900 1500 1820 3500
3 120 20 55 140 290 542 1050 1700 5800 10190
150 22 60 160 330 650 1200 2000 4400 7180
200 22 60 160 330 650 1200 2000 5800 10190
250 22 60 160 330 650 1200 2000 4400 7180
280 19 50 140 300 550 1100 1800 5800 10190
350 22 60 160 330 650 1200 2000 4400 7180
400 22 60 160 330 650 1200 2000 5800 10190
500 22 60 160 330 650 1200 2000 4400 7180
700 19 50 140 300 550 1100 1800 3220 5000
1000 14 40 100 230 450 900 1500 1820 3500
Maximum Output Torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque 2Times of Rated Output Torque
Rated Input Speed N1n rpm 1,2,3 3~1000 5000 5000 3000 3000 3000 3000 2000 1500 1500
Maximum Input Speed N1b rpm 1,2,3 3~1000 10000 10000 6000 6000 6000 6000 4000 3000 3000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1    
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2    
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5    
High Precision Backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2    
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3    
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7    
Precision Backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤15 ≤15
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤18 ≤18
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤22 ≤22
Standard Backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5    
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7    
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11    
Torsional Rigidity Nm/arcmin 1,2,3 3~1000 3 4.5 14 25 50 145 225 213.3 339
Allowable Radial Force F2rb2 N 1,2,3 3~1000 780 1550 3250 6700 9400 14500 30000 15000 17000
Allowable Axial Force F2ab2 N 1,2,3 3~1000 390 770 1630 3350 4700 7250 14000 12000 15000
Moment of Inertia J1 kg.cm2 1 3~10 0.05 0.2 1.2 2 7.2 25 65 39.9 73.4
kg.cm2 2 12~100 0.03 0.08 0.18 0.7 1.7 7.9 14 18.8 23.8
kg.cm2 3 120~1000 0.03 0.03 0.01 0.04 0.09 0.21 0.82 13.54 18.8
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise Level dB 1,2,3 3~1000 ≤56 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70 ≤73 ≤75
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 0.6 1.3 3.9 8.7 16 31 48 110 160
2 12~100 0.8 1.8 4.6 10 20 39 62 135 180
3 120~1000 1.2 2.3 5.3 11 22 44 68 145 192

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetary gearbox

Considerations for Selecting Planetary Gearboxes for Aerospace and Satellite Applications

Selecting planetary gearboxes for aerospace and satellite applications requires careful consideration due to the unique demands of these industries:

  • Weight and Size: Aerospace and satellite systems demand lightweight and compact components. Planetary gearboxes with high power density and lightweight materials are preferred to minimize the overall weight and size of the equipment.
  • Reliability: Aerospace missions involve critical operations where component failure is not an option. Planetary gearboxes with a proven track record of reliability and durability are essential to ensure mission success.
  • High Efficiency: Efficiency is crucial in aerospace applications to optimize power usage and extend the operational life of satellites. Planetary gearboxes with high efficiency ratings contribute to energy conservation.
  • Extreme Environments: Aerospace and satellite systems are exposed to harsh conditions such as vacuum, extreme temperatures, and radiation. Planetary gearboxes need to be designed and tested to withstand these conditions without compromising performance.
  • Precision and Accuracy: Many aerospace operations require precise positioning and accurate control. Planetary gearboxes with minimal backlash and high precision gear meshing contribute to accurate movements.
  • Lubrication: Lubrication plays a vital role in aerospace gearboxes to ensure smooth operation and prevent wear. Gearboxes with efficient lubrication systems or self-lubricating materials are favored.
  • Redundancy and Fail-Safe: Some aerospace systems incorporate redundancy to ensure mission success even in case of component failure. Planetary gearboxes with built-in redundancy or fail-safe mechanisms enhance system reliability.
  • Integration: Planetary gearboxes need to be seamlessly integrated into the overall design of aerospace and satellite systems. Customization options and compatibility with other components are important factors.

Overall, selecting planetary gearboxes for aerospace and satellite applications involves a comprehensive evaluation of factors related to weight, reliability, efficiency, durability, environmental resistance, precision, and integration to meet the unique demands of these industries.

planetary gearbox

Considerations for Selecting Size and Gear Materials in Planetary Gearboxes

Choosing the appropriate size and gear materials for a planetary gearbox is crucial for optimal performance and reliability. Here are the key considerations:

1. Load and Torque Requirements: Evaluate the anticipated load and torque that the gearbox will experience in the application. Select a gearbox size that can handle the maximum load without exceeding its capacity, ensuring reliable and durable operation.

2. Gear Ratio: Determine the required gear ratio to achieve the desired output speed and torque. Different gear ratios are achieved by varying the number of teeth on the gears. Select a gearbox with a suitable gear ratio for your application’s requirements.

3. Efficiency: Consider the efficiency of the gearbox, which is influenced by factors such as gear meshing, bearing losses, and lubrication. A higher efficiency gearbox minimizes energy losses and improves overall system performance.

4. Space Constraints: Evaluate the available space for installing the gearbox. Planetary gearboxes offer compact designs, but it’s essential to ensure that the selected size fits within the available area, especially in applications with limited space.

5. Material Selection: Choose suitable gear materials based on factors like load, speed, and operating conditions. High-quality materials, such as hardened steel or specialized alloys, enhance gear strength, durability, and resistance to wear and fatigue.

6. Lubrication: Proper lubrication is critical for reducing friction and wear in the gearbox. Consider the lubrication requirements of the selected gear materials and ensure the gearbox is designed for efficient lubricant distribution and maintenance.

7. Environmental Conditions: Assess the environmental conditions in which the gearbox will operate. Factors such as temperature, humidity, and exposure to contaminants can impact gear material performance. Choose materials that can withstand the operating environment.

8. Noise and Vibration: Gear material selection can influence noise and vibration levels. Some materials are more adept at dampening vibrations and reducing noise, which is essential for applications where quiet operation is crucial.

9. Cost: Consider the budget for the gearbox and balance the cost of materials, manufacturing, and performance requirements. While high-quality materials may increase initial costs, they can lead to longer gearbox lifespan and reduced maintenance expenses.

10. Manufacturer’s Recommendations: Consult with gearbox manufacturers or experts for guidance on selecting the appropriate size and gear materials. They can provide insights based on their experience and knowledge of various applications.

Ultimately, the proper selection of size and gear materials is vital for achieving reliable, efficient, and long-lasting performance in planetary gearboxes. Taking into account load, gear ratio, materials, lubrication, and other factors ensures the gearbox meets the specific needs of the application.

planetary gearbox

Design Principles and Functions of Planetary Gearboxes

Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:

  • Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
  • Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
  • Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
  • Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
  • Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
  • Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
  • Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
  • Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
  • Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.

Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.

China best High Torque Precision Planetary Gearbox for Conveyors   cycloidal gearbox	China best High Torque Precision Planetary Gearbox for Conveyors   cycloidal gearbox
editor by CX 2024-02-18

China best Ae120 1stage Inclined Tooth Transmission Precison Planetary Reducer Gearbox for Motor, 0.75~120kw gearbox assembly

Product Description

Product Description

Ratio : 3:1—-10000:1 Backlash :  up to 3 arcmin
Output : up to 6000N.m Frame : AE/AER042-320

  Output: Inclined Tooth Output Shaft 
               Double support of deep groove ball bearing

 

AE core feature

Structural feature

     Reducer output planetary frame adopts integrated nut to eliminate axial clearance design, the front and back tapered roller bearing large span distribution and the whole box, forming a super integrated structure, to ensure the improvement of torsional rigidity and has a super strong radial bearing capacity and axial bearing capacity, using a processing process to complete, to ensure a very high coaxiality.

Gear ring of reducer adopts integral structure design.

      Reducer gear ring, planetary frame, input shaft are made of 40Cr high-quality structural steel, hot forging process, so as to obtain higher material density, than the use of casting box, round steel, with higher strength, rigidity, toughness.

Gear characteristics

      Real hard tooth surface helical gear, gear material is 20CrMnTi high quality alloy steel, after carburizing – grinding process processing, hardness up to HRC62, compared with ordinary steel 40Cr, 38CrMnTi surface nitriding treatment of gear has higher hardness, rigidity, toughness, wear resistance. The design and analysis technology of 3DSimulation is adopted to modify the tooth shape, tooth direction and follow the trimming, respectively, in order to reduce the noise of gear meshing and increase the service life of the gear train.

Application characteristics

      Long span tapered roller bearing arrangement output integral planetary architecture, so that the product has strong radial bearing capacity and excellent axial bearing capacity, and has high rigidity. High precision applications, frequent start-stop and load changes are outstanding.
 

Installation Instructions

Precision planetary reducer – about installation

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

The Role of Lubrication and Cooling in Maintaining Planetary Gearbox Performance

Lubrication and cooling are essential factors in ensuring the optimal performance and longevity of planetary gearboxes. Here’s how they play a crucial role:

Lubrication: Proper lubrication is vital for reducing friction and wear between gear teeth and other moving components within the gearbox. It forms a protective layer that prevents metal-to-metal contact and minimizes heat generation. The lubricant also helps dissipate heat and contaminants, ensuring a smoother and quieter operation.

Using the right type of lubricant and maintaining the proper lubrication level are essential. Over time, lubricants may degrade due to factors like temperature, load, and operating conditions. Regular lubricant analysis and replacement help maintain optimal gearbox performance.

Cooling: Planetary gearboxes can generate significant heat during operation due to friction and power transmission. Excessive heat can lead to lubricant breakdown, reduced efficiency, and premature wear. Cooling mechanisms, such as cooling fans, fins, or external cooling systems, help dissipate heat and maintain a stable operating temperature.

Efficient cooling prevents overheating and ensures consistent lubricant properties, extending the life of the gearbox components. It’s particularly important in applications with high-speed or high-torque requirements.

Overall, proper lubrication and cooling practices are essential to prevent excessive wear, maintain efficient power transmission, and prolong the service life of planetary gearboxes. Regular maintenance and monitoring of lubrication quality and cooling effectiveness are key to ensuring the continued performance of these gearboxes.

planetary gearbox

Impact of Gear Ratio on Output Speed and Torque in Planetary Gearboxes

The gear ratio of a planetary gearbox has a significant effect on both the output speed and torque of the system. The gear ratio is defined as the ratio of the number of teeth on the driven gear (output) to the number of teeth on the driving gear (input).

1. Output Speed: The gear ratio determines the relationship between the input and output speeds of the gearbox. A higher gear ratio (more teeth on the output gear) results in a lower output speed compared to the input speed. Conversely, a lower gear ratio (fewer teeth on the output gear) leads to a higher output speed relative to the input speed.

2. Output Torque: The gear ratio also affects the output torque of the gearbox. An increase in gear ratio amplifies the torque delivered at the output, making it higher than the input torque. Conversely, a decrease in gear ratio reduces the output torque relative to the input torque.

The relationship between gear ratio, output speed, and output torque is inversely proportional. This means that as the gear ratio increases and output speed decreases, the output torque proportionally increases. Conversely, as the gear ratio decreases and output speed increases, the output torque proportionally decreases.

It’s important to note that the gear ratio selection in a planetary gearbox involves trade-offs between output speed and torque. Engineers choose a gear ratio that aligns with the specific application’s requirements, considering factors such as desired speed, torque, and efficiency.

China best Ae120 1stage Inclined Tooth Transmission Precison Planetary Reducer Gearbox for Motor, 0.75~120kw   gearbox assembly	China best Ae120 1stage Inclined Tooth Transmission Precison Planetary Reducer Gearbox for Motor, 0.75~120kw   gearbox assembly
editor by CX 2024-02-17

China wholesaler Customizable Ratios in High Precision Planetary Gearbox for Robotics best automatic gearbox

Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
060 090 115 142 180 220
Rated output torque T2n N.m 1 3 55 130 208 342 750 1140
4 50 140 290 542 1050 1700
5 60 160 330 650 1200 2000
6 55 140 300 550 1100 1800
7 50 140 300 550 1100 1800
8 45 120 260 500 1000 1600
10 40 100 230 450 900 1500
2 12 55 130 208 342 1050 1700
15 60 160 330 650 1200 2000
20 60 160 330 650 1200 2000
25 60 160 330 650 1200 2000
28 50 140 300 550 1100 1800
30 55 130 230 450 900 1500
35 60 160 330 650 1200 2000
40 60 160 330 650 1200 2000
50 60 160 330 650 1200 2000
70 50 140 300 550 1100 1800
100 40 100 230 450 900 1500
3 120 55 140 290 542 1050 1700
150 60 160 330 650 1200 2000
200 60 160 330 650 1200 2000
250 60 160 330 650 1200 2000
280 50 140 300 550 1100 1800
350 60 160 330 650 1200 2000
400 60 160 330 650 1200 2000
500 60 160 330 650 1200 2000
700 50 140 300 550 1100 1800
1000 40 100 230 450 900 1500
Maximum output torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque
Rated input speed N1n rpm 1,2,3 3~1000 4000 3000 3000 3000 3000 2000
Maximum input speed N1b rpm 1,2,3 3~1000 8000 6000 6000 6000 6000 4000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
High precision backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Precision backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9
Standard backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11
Torsional rigidity Nm/arcmin 1,2,3 3~1000 3.5 10.5 20 39 115 180
Allowable radial force F2rb2 N 1,2,3 3~1000 1100 2200 5571 7610 10900 24000
Allowable axial force F2ab2 N 1,2,3 3~1000 630 1230 2550 3780 5875 11200
Moment of Inertia J1 kg.cm2 1 3~10 0.2 1.2 2 7.2 25 65
2 12~100 0.08 0.18 0.7 1.7 7.9 14
3 120~1000 0.03 0.01 0.04 0.09 0.21 0.82
Service Life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise Level dB 1,2,3 3~1000 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection Class IP 1,2,3 3~1000 IP65
Weights kg 1 3~10 1.3 3.9 8.7 16 31 48
2 12~100 1.8 4.6 10 20 39 62
3 120~1000 2.3 5.3 10.5 21 41 66

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

planetary gearbox

Contribution of Planetary Gearboxes to Conveyor Belt Efficiency in Mining Operations

Planetary gearboxes play a crucial role in enhancing the efficiency and performance of conveyor belts in mining operations:

  • High Torque Transmission: Planetary gearboxes are capable of transmitting high torque with minimal backlash. This feature ensures that the gearbox efficiently handles the substantial load requirements of conveyor belts used in mining, preventing slippage and ensuring reliable material transportation.
  • Compact Design: The compact size of planetary gearboxes allows them to be integrated seamlessly into conveyor systems, optimizing space utilization and allowing for efficient equipment layout in mining environments.
  • Variable Speed Control: Planetary gearboxes provide precise speed control and can accommodate various speed requirements of conveyor belts. This versatility allows operators to adjust the conveyor speed to match specific material handling needs.
  • High Efficiency: The inherent design of planetary gearboxes minimizes energy losses due to efficient power transmission. This efficiency translates into reduced energy consumption and operational costs over the lifetime of the conveyor system.
  • Reliability and Durability: Planetary gearboxes are engineered to withstand demanding conditions often encountered in mining environments, including shock loads, abrasive materials, and harsh weather. Their robust construction ensures reliable operation and minimal downtime.
  • Low Maintenance: The durability of planetary gearboxes leads to reduced maintenance requirements. This benefit is particularly valuable in mining operations where minimizing downtime is essential for maintaining high productivity levels.
  • Customizability: Planetary gearboxes can be tailored to suit specific conveyor system requirements, including gear ratios, torque ratings, and mounting options. This flexibility allows for optimized system design and performance.

By effectively transmitting power, providing accurate speed control, and offering a compact and robust design, planetary gearboxes significantly enhance the efficiency and reliability of conveyor belts in mining operations. Their ability to handle high loads, operate with low maintenance needs, and withstand harsh conditions contributes to improved productivity and reduced operational costs.

planetary gearbox

Recent Advancements in Planetary Gearbox Technology

Advancements in planetary gearbox technology have led to improved performance, efficiency, and durability. Here are some notable developments:

High-Efficiency Gearing: Manufacturers are using advanced materials and precision manufacturing techniques to create gears with optimized tooth profiles. This reduces friction and enhances overall efficiency, resulting in higher power transmission with lower energy losses.

Enhanced Lubrication: Innovative lubrication systems and high-performance lubricants are being employed to ensure consistent and reliable lubrication even in extreme conditions. This helps to reduce wear and extend the lifespan of the gearbox.

Compact Designs: Engineers are focusing on designing more compact and lightweight planetary gearboxes without compromising their performance. This is particularly important for applications with limited space and weight constraints.

Integrated Sensors: Planetary gearboxes are now being equipped with sensors and monitoring systems that provide real-time data on temperature, vibration, and other operating parameters. This allows for predictive maintenance and early detection of potential issues.

Smart Gearboxes: Some modern planetary gearboxes are equipped with smart features such as remote monitoring, adaptive control, and data analysis. These features contribute to more efficient operation and better integration with automation systems.

Advanced Materials: The use of high-strength and wear-resistant materials, such as advanced alloys and composites, improves the durability and load-carrying capacity of planetary gearboxes. This is particularly beneficial for heavy-duty and high-torque applications.

Customization and Simulation: Advanced simulation and modeling tools enable engineers to design and optimize planetary gearboxes for specific applications. This customization helps achieve the desired performance and reliability levels.

Noise and Vibration Reduction: Innovations in gear design and manufacturing techniques have led to quieter and smoother-running planetary gearboxes, making them suitable for applications where noise and vibration are concerns.

Environmental Considerations: With growing environmental awareness, manufacturers are developing more eco-friendly lubricants and materials for planetary gearboxes, reducing their ecological footprint.

Overall, recent advancements in planetary gearbox technology are aimed at enhancing efficiency, durability, and versatility to meet the evolving demands of various industries and applications.

planetary gearbox

Examples of High Torque and Compact Design Applications for Planetary Gearboxes

Planetary gearboxes excel in applications where high torque output and a compact design are essential. Here are some scenarios where these characteristics are crucial:

  • Automotive Transmissions: In modern vehicles, planetary gearboxes are used in automatic transmissions to efficiently transmit engine power to the wheels. The compact size of planetary gearboxes allows for integration within the limited space of a vehicle’s transmission housing.
  • Robotics: Planetary gearboxes are utilized in robotic arms and joints, where compactness is essential to maintain the robot’s overall size while providing the necessary torque for precise and controlled movement.
  • Conveyor Systems: Conveyor belts in industries like material handling and manufacturing often require high torque to move heavy loads. The compact design of planetary gearboxes allows them to be integrated into the conveyor system’s framework.
  • Wind Turbines: Wind turbine applications demand high torque to convert low wind speeds into sufficient rotational force for power generation. The compact design of planetary gearboxes helps optimize space within the turbine’s nacelle.
  • Construction Machinery: Heavy equipment used in construction, such as excavators and loaders, rely on planetary gearboxes to provide the necessary torque for digging and lifting operations without adding excessive weight to the machinery.
  • Marine Propulsion: Planetary gearboxes play a crucial role in marine propulsion systems by efficiently transmitting high torque from the engine to the propeller shaft. The compact design is particularly important in the limited space of a ship’s engine room.

These examples highlight the significance of planetary gearboxes in applications where both high torque output and a compact footprint are vital considerations. Their ability to deliver efficient torque conversion within a small space makes them well-suited for a wide range of industries and machinery.

China wholesaler Customizable Ratios in High Precision Planetary Gearbox for Robotics   best automatic gearbox	China wholesaler Customizable Ratios in High Precision Planetary Gearbox for Robotics   best automatic gearbox
editor by CX 2024-02-16

China Standard China Advance CZPT Planetary Transmission Small/High-Power Reducer Light Diesel Engine Propeller Marine Boat Gearbox for Jd400 with high quality

Product Description

 

Product Description

 

JD400 Model

Feature

 Oil pump rotating 180 degree can change the input direction

Housing:SAE 0.1

 Flange:14″,16″,18″

L×W×H:801x1571x1066mm N.W.: 910KG

 Type

Nominal 
coefficient

Accurate
 coefficient

Ratio
 (horsepower HP/r.min)
JD400 4.0:1 4.000:1 0.450
4.23:1 4.227:1 0.450
4.5:1 4.476:1 0.450
4.7:1 4.700:1 0.450
5.0:1 5.000:1 0.450
5.5:1 5.474:1 0.400
6.0:1 5.890:1 0.379
6.0:1 6.000:1 0.379

 

 

 

 

Company Profile

 

Our Advantages

1. Ensure good quality, good package for transporation and deliver on time during the production phase;
2. Manging sea freight to customer’s port of destination;
3. Be responsible for the after-sales service.

Packaging & Shipping

 

Recommed products

Quality Assurance
1. Marine class certificate.
2. Three party inspection can be arranged.
 

FAQ

Q1: Why we choose you?
11 professional engineers can provide overall solution services.
15 years specialising in marine deck equipment.
18 long-term cooperation supporting factories.
24 hours a day after-sale technical support.

Q2: What kind of payments do you accept?
T/T, L/C, Western Union, D/A, D/P, etc.

Q3: How about the Delivery Time?
We could finish the production within 30 days.

Q4: What’s the MOQ?
MOQ is 1 set.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machinery, Marine
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Customization:
Available

|

Customized Request

planetary gearbox

Concept of Coaxial and Parallel Shaft Arrangements in Planetary Gearboxes

Coaxial and parallel shaft arrangements refer to the orientation of the input and output shafts in a planetary gearbox:

  • Coaxial Shaft Arrangement: In this arrangement, the input and output shafts are aligned along the same axis, with one shaft passing through the center of the other. This design results in a compact and space-efficient gearbox, making it suitable for applications with limited space. Coaxial planetary gearboxes are commonly used in scenarios where the gearbox needs to be integrated into a compact housing or enclosure.
  • Parallel Shaft Arrangement: In a parallel shaft arrangement, the input and output shafts are positioned parallel to each other but not on the same axis. Instead, they are offset from each other. This configuration allows for greater flexibility in designing the layout of the gearbox and the surrounding machinery. Parallel shaft planetary gearboxes are often used in applications where the spatial arrangement requires the input and output shafts to be positioned in different locations.

The choice between a coaxial and parallel shaft arrangement depends on factors such as available space, mechanical requirements, and the desired layout of the overall system. Coaxial arrangements are advantageous when space is limited, while parallel arrangements offer more design flexibility for accommodating various spatial constraints.

planetary gearbox

Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment

Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:

High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.

Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.

Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.

Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.

Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.

Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.

Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.

planetary gearbox

Challenges and Solutions for Managing Power Transmission Efficiency in Planetary Gearboxes

Managing power transmission efficiency in planetary gearboxes is crucial to ensure optimal performance and minimize energy losses. Several challenges and solutions are involved in maintaining high efficiency:

1. Gear Meshing Efficiency: The interaction between gears can lead to energy losses due to friction and meshing misalignment. To address this, manufacturers use precision manufacturing techniques to ensure accurate gear meshing and reduce friction. High-quality materials and surface treatments are also employed to minimize wear and friction.

2. Lubrication: Proper lubrication is essential to reduce friction and wear between gear surfaces. Using high-quality lubricants with the appropriate viscosity and additives can enhance power transmission efficiency. Regular maintenance and monitoring of lubrication levels are vital to prevent efficiency losses.

3. Bearing Efficiency: Bearings support the rotating elements of the gearbox and can contribute to energy losses if not properly designed or maintained. Choosing high-quality bearings and ensuring proper alignment and lubrication can mitigate efficiency losses in this area.

4. Bearing Preload: Incorrect bearing preload can lead to increased friction and efficiency losses. Precision assembly and proper adjustment of bearing preload are necessary to optimize power transmission efficiency.

5. Mechanical Losses: Various mechanical losses, such as windage and churning losses, can occur in planetary gearboxes. Designing gearboxes with streamlined shapes and efficient ventilation systems can reduce these losses and enhance overall efficiency.

6. Material Selection: Choosing appropriate materials with high strength and minimal wear characteristics is essential for reducing power losses due to material deformation and wear. Advanced materials and surface coatings can be employed to enhance efficiency.

7. Noise and Vibration: Excessive noise and vibration can indicate energy losses in the form of mechanical inefficiencies. Proper design and precise manufacturing techniques can help minimize noise and vibration, indicating better power transmission efficiency.

8. Efficiency Monitoring: Regular efficiency monitoring through testing and analysis allows engineers to identify potential issues and optimize gearbox performance. This proactive approach ensures that any efficiency losses are promptly addressed.

By addressing these challenges through careful design, material selection, manufacturing techniques, lubrication, and maintenance, engineers can manage power transmission efficiency in planetary gearboxes and achieve high-performance power transmission systems.

China Standard China Advance CZPT Planetary Transmission Small/High-Power Reducer Light Diesel Engine Propeller Marine Boat Gearbox for Jd400   with high quality China Standard China Advance CZPT Planetary Transmission Small/High-Power Reducer Light Diesel Engine Propeller Marine Boat Gearbox for Jd400   with high quality
editor by CX 2024-02-15

China Custom China Made Low Price Px80 Planetary Gearbox for Servo Motor or NEMA32 Brushless DC Motor Reducer gearbox and motor

Product Description

China made low price planetary gearbox for servo motor or nema32 brushless dc motor reducer

 

 

 

The deceleration ratio is 1:4 1:10 1:16 1:24 1:36 large spot inventory reduction ratio! Provide custom other spec reducer and deceleration ratio! No matter the quantity as long as you can provide drawings we can make it!

KeyWords Planetary gearbox
Model PX80
Ratio 1-stage: 4.6

2-stage: 10.16.24.36

3-stage: 64.96.125.144

Color Black/Silver or on customer request
Material of housing Aluminum alloy with iron
Oil Seal Input:     Output: NAK
Lubricant Synthetic or Mineral Oil
Warranty 1 year
Packing Carton and wooden case
Mass 2.5Kg

 

Click to get your special discount

 

 

Click to get your special discount

 

 

 

product assortment

 

Click to get your special discount

Service

 

 

Customer service officer

 

Our customer service personnel are experienced product specialists who can answer your questions 7 days a week from

9 am to 5 pm.

Contact us now.

OEM / ODM

Our professional staffs allow us to have the capability to design and manufacture a wide range of new items according to the buyer’s requirements. Our ability to provide buyers labels and design services for our clients make us an attractive choice.

Firm team

Times Brilliant is committed to delivery quality products. We guarantee our products to be free from manufacture defects.

We offer one-month of return & exchange service, one-year of parts replacement and lifetime tech support

 

Factory Tour

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Px80 Planetary Gearbox
Weight (Kg): 4 Kg
Gearing Arrangement: Planetary
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

planetary gearbox

Contribution of Planetary Gearboxes to Conveyor Belt Efficiency in Mining Operations

Planetary gearboxes play a significant role in enhancing the efficiency of conveyor belts used in mining operations:

  • High Torque Capability: Planetary gearboxes are capable of providing high torque output, which is essential for handling heavy loads of mined materials on conveyor belts.
  • Compact Design: The compact nature of planetary gearboxes allows them to be integrated into tight spaces, making them suitable for conveyor systems where space is limited.
  • Multi-Stage Design: Planetary gearboxes can achieve high gear ratios through multiple stages of gear reduction. This allows for efficient power transmission from the motor to the conveyor, reducing the load on the motor and increasing overall efficiency.
  • Load Distribution: Planetary gearboxes distribute the load across multiple planet gears, which helps in minimizing wear and ensuring longer lifespan of the gearbox.
  • Variable Speed Control: By using planetary gearboxes with variable speed capabilities, conveyor belts can be operated at different speeds to match the processing requirements, optimizing material handling and energy consumption.
  • Overload Protection: Some planetary gearboxes feature built-in overload protection mechanisms, safeguarding the gearbox and conveyor system from damage due to sudden increases in load.

Overall, planetary gearboxes enhance the efficiency, reliability, and performance of conveyor belts in mining operations by providing the necessary torque, compact design, and precise control needed to transport mined materials effectively.

planetary gearbox

Maintenance Practices to Extend the Lifespan of Planetary Gearboxes

Proper maintenance is essential for ensuring the longevity and optimal performance of planetary gearboxes. Here are specific maintenance practices that can help extend the lifespan of planetary gearboxes:

1. Regular Inspections: Implement a schedule for routine visual inspections of the gearbox. Look for signs of wear, damage, oil leaks, and any abnormal conditions. Early detection of issues can prevent more significant problems.

2. Lubrication: Adequate lubrication is crucial for reducing friction and wear between gearbox components. Follow the manufacturer’s recommendations for lubricant type, viscosity, and change intervals. Ensure that the gearbox is properly lubricated to prevent premature wear.

3. Proper Installation: Ensure the gearbox is installed correctly, following the manufacturer’s guidelines and specifications. Proper alignment, torque settings, and clearances are critical to prevent misalignment-related wear and other issues.

4. Load Monitoring: Avoid overloading the gearbox beyond its designed capacity. Excessive loads can accelerate wear and reduce the gearbox’s lifespan. Regularly monitor the load conditions and ensure they are within the gearbox’s rated capacity.

5. Temperature Control: Maintain the operating temperature within the recommended range. Excessive heat can lead to accelerated wear and lubricant breakdown. Adequate ventilation and cooling measures may be necessary in high-temperature environments.

6. Seal and Gasket Inspection: Regularly check seals and gaskets for signs of leakage. Damaged seals can lead to lubricant loss and contamination, which can cause premature wear and gear damage.

7. Vibration Analysis: Use vibration analysis techniques to detect early signs of misalignment, imbalance, or other mechanical issues. Monitoring vibration levels can help identify problems before they lead to serious damage.

8. Preventive Maintenance: Establish a preventive maintenance program based on the gearbox’s operational conditions and usage. Perform scheduled maintenance tasks such as gear inspections, lubricant changes, and component replacements as needed.

9. Training and Documentation: Ensure that maintenance personnel are trained in proper gearbox maintenance procedures. Keep comprehensive records of maintenance activities, inspections, and repairs to track the gearbox’s condition and history.

10. Consult Manufacturer Guidelines: Always refer to the manufacturer’s maintenance and servicing guidelines specific to the gearbox model and application. Following these guidelines will help maintain warranty coverage and ensure best practices are followed.

By adhering to these maintenance practices, you can significantly extend the lifespan of your planetary gearbox, minimize downtime, and ensure reliable performance for your industrial machinery or application.

planetary gearbox

Advantages of Planetary Gearboxes Compared to Other Gearbox Configurations

Planetary gearboxes, also known as epicyclic gearboxes, offer several advantages compared to other gearbox configurations. These advantages make them well-suited for a wide range of applications. Here’s a closer look at why planetary gearboxes are favored:

  • Compact Size: Planetary gearboxes are known for their compact and space-efficient design. The arrangement of multiple gears within a single housing allows for high gear reduction ratios without significantly increasing the size of the gearbox.
  • High Torque Density: Due to their compact design, planetary gearboxes offer high torque density, meaning they can transmit a significant amount of torque relative to their size. This makes them ideal for applications where space is limited, but high torque is required.
  • Efficiency: Planetary gearboxes can achieve high efficiency levels, especially when properly lubricated and well-designed. The arrangement of multiple meshing gears allows for load distribution, reducing individual gear tooth stresses and minimizing losses due to friction.
  • Multiple Gear Stages: Planetary gearboxes can be designed with multiple stages, allowing for higher gear reduction ratios. This is particularly advantageous when precise control of output speed and torque is required.
  • High Gear Ratios: Planetary gearboxes can achieve high gear reduction ratios in a single stage, eliminating the need for multiple external gears. This simplifies the overall design and reduces the number of components.
  • Load Sharing: The multiple gear meshing arrangements in planetary gearboxes distribute loads evenly across multiple gears, reducing the stress on individual components and enhancing overall durability.
  • High Precision: Planetary gearboxes offer high precision and accuracy in gear meshing, making them suitable for applications that demand precise motion control.
  • Quiet Operation: The design of planetary gearboxes often leads to smoother and quieter operation compared to some other gearbox configurations, contributing to improved user experience.

Overall, the advantages of planetary gearboxes in terms of size, torque density, efficiency, versatility, and precision make them an attractive choice for a wide range of applications across industries, including robotics, automotive, aerospace, and industrial machinery.

China Custom China Made Low Price Px80 Planetary Gearbox for Servo Motor or NEMA32 Brushless DC Motor Reducer   gearbox and motor	China Custom China Made Low Price Px80 Planetary Gearbox for Servo Motor or NEMA32 Brushless DC Motor Reducer   gearbox and motor
editor by CX 2024-02-14

China best High Precision CZPT Transmission Planetary Gearbox Speed Reduce for Servo Motor differential gearbox

Product Description

Precision planetary gear reducer is a new-generation of product developed by our company, with a compromise of advanced technology both at home and abroad, its main features are as follows:

1. Low noise: under 65db.

2. Low backlash: within 3 arcmin.

3. High efficiency: 97% for 1 stage, 94% for 2 stages.

4. High input speed: Rated input speed 3000rpm, max input speed 6000 rpm.

5. High output torque: higher torque output than that of conventional planetary gear reducer.

6. High stability hardening,which extends gear service life and maintain high accuracy as new after a long period of operation.

 

Precicion planetary gear reducer is widely used in the following fields:

1. Aerospace, military industries.

2. Medical health, electronic information industries.

3. Industrial robots, productin automation, CNC machine tool manufacturing industries.

4. Motor,textile,printing,food,metallurgical,envrironment protection engineering, warehouse logistics industries.

 

About Xingda since 1984
HangZhou Melchizedek Import & Export Co., Ltd. is a leader manufactur in mechanism field and punching/stamp
ing field since 1984. Our main product, NMRV worm gear speed reducer and series helical gearbox, XDR,
XDF, XDK, XDShave reached the advanced technique index of the congeneric European and Janpanese produc
ts, We offer standard gears, sprockets, chains, pulleys, couplings, bushes and so on. We also can accept orders
of  non-standard products, such as gears, shafts, punching parts ect, according to customers’ Drawings or sam-
ples. 

Our company has complete set of equipment including CNC, lathes, milling machines, gear hobbing machine, g-
ear grinding machine, gear honing machine, gear shaping machine, worm grinder, grinding machines, drilling m-
achines, boringmachines, planer, drawing benches, punches, hydraulic presses, plate shearing machines and s-
o on. We have advanced testing equipments also. 

Our company has established favorable cooperation relationships with sub-suppliers involving casting, raw mat-
erial, heat treatment, surface finishing and so on.

                                                               

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Type: Planetary Gear Reducer
Trademark: OEM; EED
Origin: China
Samples:
US$ 230/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

planetary gearbox

Challenges in Achieving High Gear Ratios with Compactness in Planetary Gearboxes

Designing planetary gearboxes with high gear ratios while maintaining compactness presents several challenges:

  • Space Constraints: As the gear ratio increases, the number of gear stages required also increases. This can lead to larger gearbox sizes, which may be challenging to accommodate in applications with limited space.
  • Bearing Loads: Higher gear ratios often result in increased loads on the bearings and other components due to the redistribution of forces. This can impact the durability and lifespan of the gearbox.
  • Efficiency: Each gear stage introduces losses due to friction and other factors. With multiple stages, the overall efficiency of the gearbox can decrease, affecting its energy efficiency.
  • Complexity: Achieving high gear ratios can require complex gear arrangements and additional components, which can lead to increased manufacturing complexity and costs.
  • Thermal Effects: Higher gear ratios can lead to greater heat generation due to increased friction and loads. Managing thermal effects becomes crucial to prevent overheating and component failure.

To address these challenges, gearbox designers use advanced materials, precise machining techniques, and innovative bearing arrangements to optimize the design for both compactness and performance. Computer simulations and modeling play a critical role in predicting the behavior of the gearbox under different operating conditions, helping to ensure reliability and efficiency.

planetary gearbox

Contribution of Planetary Gearboxes to Construction Machinery and Heavy Equipment

Planetary gearboxes play a crucial role in enhancing the proper functioning of construction machinery and heavy equipment. Here’s how they contribute:

High Torque Transmission: Construction machinery often requires high torque to handle heavy loads and perform tasks like digging, lifting, and material handling. Planetary gearboxes excel in transmitting high torque efficiently, allowing these machines to operate effectively even under demanding conditions.

Compact Design: Many construction and heavy equipment applications have limited space for gear mechanisms. Planetary gearboxes offer a compact design with a high power-to-weight ratio. This compactness allows manufacturers to integrate gearboxes into tight spaces without compromising performance.

Customizable Ratios: Different construction tasks require varying speeds and torque levels. Planetary gearboxes offer the advantage of customizable gear ratios, allowing equipment designers to tailor the gearbox to the specific needs of the application. This flexibility enhances the versatility of construction machinery.

Durability and Reliability: Construction sites are challenging environments with dust, debris, and extreme weather conditions. Planetary gearboxes are known for their durability and robustness, making them well-suited for heavy-duty applications. Their enclosed design protects internal components from contaminants and ensures reliable operation.

Efficient Power Distribution: Many construction machines are equipped with multiple functions that require power distribution among different components. Planetary gearboxes can be designed with multiple output shafts, enabling efficient distribution of power to various tasks while maintaining precise control.

Reduced Maintenance: The rugged construction and efficient power transmission of planetary gearboxes result in reduced wear and lower maintenance requirements. This is particularly beneficial in construction settings where downtime for maintenance can be costly.

Overall, planetary gearboxes contribute significantly to the proper functioning of construction machinery and heavy equipment by providing high torque, compactness, customization, durability, efficient power distribution, and reduced maintenance needs. Their capabilities enhance the performance and reliability of these machines in the demanding construction industry.

planetary gearbox

Design Principles and Functions of Planetary Gearboxes

Planetary gearboxes, also known as epicyclic gearboxes, are a type of gearbox that consists of one or more planet gears that revolve around a central sun gear, all contained within an outer ring gear. The design principles and functions of planetary gearboxes are based on this unique arrangement:

  • Sun Gear: The sun gear is positioned at the center and is connected to the input shaft. It transmits power from the input source to the planetary gears.
  • Planet Gears: Planet gears are small gears that rotate around the sun gear. They are typically mounted on a carrier, which is connected to the output shaft. The interaction between the planet gears and the sun gear creates both speed reduction and torque amplification.
  • Ring Gear: The outer ring gear is stationary and surrounds the planet gears. The teeth of the planet gears mesh with the teeth of the ring gear. The ring gear serves as the housing for the planet gears and provides a fixed outer reference point.
  • Function: Planetary gearboxes offer various gear reduction ratios by altering the arrangement of the input, output, and planet gears. Depending on the configuration, the sun gear, planet gears, or ring gear can serve as the input, output, or stationary element. This flexibility allows planetary gearboxes to achieve different torque and speed combinations.
  • Gear Reduction: In a planetary gearbox, the planet gears rotate while also revolving around the sun gear. This double motion creates multiple gear meshing points, distributing the load and enhancing torque transmission. The output shaft, connected to the planet carrier, rotates at a lower speed and higher torque than the input shaft.
  • Torque Amplification: Due to the multiple points of contact between the planet gears and the sun gear, planetary gearboxes can achieve torque amplification. The arrangement of gears allows for load sharing and distribution, leading to efficient torque transmission.
  • Compact Size: The compact design of planetary gearboxes, achieved by stacking the gears concentrically, makes them suitable for applications where space is limited.
  • Multiple Stages: Planetary gearboxes can be designed with multiple stages, where the output of one stage becomes the input of the next. This arrangement allows for high gear reduction ratios while maintaining a compact size.
  • Controlled Motion: By controlling the arrangement of the gears and their rotation, planetary gearboxes can provide different motion outputs, including forward, reverse, and even variable speeds.

Overall, the design principles of planetary gearboxes allow them to provide efficient torque transmission, compact size, high gear reduction, and versatile motion control, making them well-suited for various applications in industries such as automotive, robotics, aerospace, and more.

China best High Precision CZPT Transmission Planetary Gearbox Speed Reduce for Servo Motor   differential gearbox	China best High Precision CZPT Transmission Planetary Gearbox Speed Reduce for Servo Motor   differential gearbox
editor by CX 2024-02-13